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of construction 
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Received 23 November 1984, in final form 17 April 1985 

Abstract. For an arbitrary real semisimple Lie algebra g, a method is presented of construct- 
ing skew-Hermitian realisations in terms of quantum canonical variables p, ,  q,. The 
construction starts with a decomposition g = n$@g,b@nb of g, which is a simple generalisa- 
tion of the triangle decomposition, employing substantially an induced representation of 
g with respect to a suitable representation U of the subalgebra g,b@nb. It is shown that 
the realisations obtained are Schurean. As examples, the realisations for the algebras 
sp(2, R )  and gl(3, R )  are calculated explicitly. 

1. Introduction 

A realisation (also, canonical realisation or boson representation) of a Lie algebra g 
denotes an expression of the elements of g by means of polynomials in quantum 
canonical variables pi, qi which preserve the commutation relations of g. Several types 
of boson representations are used in physical applications; e.g., see Holstein and 
Primakoff (1940), Dyson (1956), Schwinger (1965). The number of publications on 
this subject has increased rapidly in the last few years in connection with the introduc- 
tion of the interacting boson model in nuclear physics; see Dobaczewski (1981a, b, 
1982) or Klein (1983) and references therein. Deenen and Quesne (1982a, b, 1984a, b) 
have given explicit forms of realisations for the symplectic algebras sp(2d, R) .  These 
realisations are physically interesting in connection with a microscopic model for the 
system of N nucleons in d ( =  1,2, or 3) dimensions; for a particular survey of this 
model see Moshinsky (1984 and references therein). In the recent work of Dundarer 
and Gursey (1984) a class of realisations of the algebra su(3) was constructed. Canoni- 
cal realisations also have many applications in representation theory-see Baird and 
Biedenharn (1963), Kihlberg (1965), Barut and Raczka (1977) or Burdik etaZ (1981a, b). 

In the papers HavliEek and Exner (1975a, b, 1978) and by HavliEek and Lassner 
(1975, 1976a, b, c, 1977) extensive families of realisations for all complex classical Lie 
algebras and for most of their real forms were constructed. All these realisations have 
two interesting properties with respect to an application in the representation theory. 
They are Schurean (i.e. they have the Casimir operators realised by multiples of unity), 
and in the case of real forms, they are skew-Hermitian. 

In this paper we present an algebraic method of constructing realisations for any 
real semisimple Lie algebra g. It is shown that any induced representation of g can 
be rewritten as a boson one. This fact is the starting point of our construction. The 
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resulting realisations are Schurean and skew-Hermitian. The Lie algebras sp(2, R )  
and gl(3, R )  are treated as illustrative examples. In the case of the algebra sp(2, R ) ,  
we get the Dyson realisations which were constructed by Deenen and Quesne (1984b). 
The realisations of the algebra gl(3, R )  are of the same type as the realisation obtained 
by HavliEek and Lassner (1975). It is likely that application of the present method to 
classical simple Lie algebras will lead to realisations similar to those given explicitly 
in the papers mentioned. However, we expect our method to give other realisations 
which are not obtained. Some positive indications have been obtained already; the 
results will be presented in a forthcoming series of papers. 

2. Preliminaries 

Here we shall briefly review some notions needed in the following. 
Let g be a real or complex Lie algebra. By g we denote its complexification; then 

g = 
Let g and go be Lie algebras, further let U(g) and U(go) be the enveloping algebras 

of their complexifications, and finally, let Wzn be the complex Weyl algebra in n- 
canonical pairs p,, qz, i = 1,2, . . . , n which fulfil the usual canonical commutation 
relations 

if g is complex. 

[Pi, ~ j l =  [ 91, q, 1 = 0, [Pl, qll = &,I. 

A realisation of a Lie algebra g is a homomorphism 

For more details about the definition and properties of the canonical realisations see 
Exner er a1 (1976). 

The homomorphism 7 extends naturally to the homomorphic mapping (denoted 
by the same symbol T) of the enveloping algebra U(g) into W2,0U(g0). Let Z(g) be 
the centre of U@). A realisation 7 is called Schurean or a Schur-realisation if all 
central elements C E Z(g) are realised by 1 0  CO where the CO’s are central elements 
of the enveloping algebra U(go). 

Recall that the involution on an associative algebra g is the mapping ‘+’:g+g 
obeying the relations 

( a X + p Y ) + = a X + + p Y +  

( X U ) + =  Y + X + ,  ( X + ) +  = x. 
Let go be a real Lie algebra. An involution on W2, together with an involution on the 
enveloping algebra U(go) defines naturally an involution on W2, OU(go) by 

/ \ +  

In what follows, we consider this involution determined by the involutions on W2, 
and U(go) respectively, which are generated by the relations 
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on the algebra W2,, and 

Y’=-Y ,  YE go ( I C )  

on the algebra U(go). 
Let g be a real Lie algebra and let ‘+’ be an involution on W,,OU(Ho) described 

above. A realisation of g on W 2 , 0 U ( ~ 0 )  is called skew-Hermitian, if all elements 
X E g, obey the relation 

( . ( X ) ) +  = -.(X). 

3. The general construction 

The construction presented in this section is based on the method of induced representa- 
tions of Lie algebras. We suppose that the reader is familiar with the basic notions of 
the theory of the induced representations, whose exposition can be found, e.g., in 
Dixmier (1974).  

Let g’ be a Lie subalgebra of g and go be a Lie subalgebra of g’, i.e. go c g ‘ c  g. In 
the following, we shall use a basis X I ,  X 2 , .  . . , X ,  in the algebra g, where 
X n + ] ,  X n t Z , .  . . , X ,  is a basis for go and X n + ] ,  X n + 2 , .  . . , X,,, is a basis for g’. Further- 
more, we shall assume that an auxiliary representation a of the algebra g’ on the space 
V is given such that 

a(X,+,) = 0 ( 2 a )  

alga is faithful. ( 2 b )  

I ( X ) (  U 0  v )  = x u 0  v 

j = 1,2 ,  . . . , m - s 

On the space U ( g ) 0  V ,  we can simply define the representation 1 of g by 

for all X E ~ ,  u ~ U ( g )  and U E  V. This representation is called the left regular rep- 
resentation. 

Consider the subspace L in U(8)O V generated by 

( U Y  0 U 1 - ( U 0 4 Y  1 U 1, U E U(g), yU(g) and U E V. 

It is easy to see that L is invariant with respect to 1. Hence we may define quotient 
representation of g on the space W=(U(g)OV)/L.  This representation is called 
induced representation and is denoted by ind(g, a). If {U,} is a basis in the space V, 
then the vectors 

IL)Ov,=lk ,  , . . . ,  k , )Ou ,=XX: l .  . . X : n O u ,  

k l ,  k 2 , .  . . , k,  E No, where No is the set of all non-negative integers, form a basis in W. 
We define the creation and annihilation operators E , ,  a,, i = 1 ,  2 , .  . . , n and the 

operators X , ,  r = n + 1 ,  . . . , s in the following way: 

d,lk, , . . . ,  k ,,..., k , ) @ u = l k ,  , . . . ,  k , + 1 ,  . . . ,  k , )@u 

a ,Jk l ,  . . . ,  k ,,.. ., k , ) O ~ s k , l k l ,  . . . ,  k , - 1 ,  . . . ,  ~ , ) O U  

z r l k l , .  . . , k , ) O u = / k l ,  . . . , k , ) O a ( X , ) u .  

( 3 a )  

( 3 b )  
(notice the normalisation convention), and 

( 3 c )  
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Obviously they obey the commutation relations 

[ai,aj]=[Ei, d j ] = O ,  [ai,Ej]=6,1 

[ U i ,  rz;] = [ a i ,  g] = 0. 

Theorem 1. Let p = ind(g, U), then all the operators p ( X ) ,  X E g, can be rewritten in the 
form 

where a:, t = 1,2, . . . , s are, in general, the infinite sums of monomials in the operators 
a,, . . . , a,. 

Booj  The formula 

X Y k  = 2 (:> Y k y .  . [ [ X ,  Y ] ,  Y],]. . . , Y] i times ( 5 )  
i = O  

implies for X X : l . .  . Xkn the following equality 

where c $ ,  t = 1,2,. . . , m, are constants independent of k' and 

Of course, 6 means (0, .  . . , O ) .  For any E ,  we define 

According to the definition ( 3 a )  and (36), aE'(lR)-Ou) = 0 for any such that ZY=l kl> 
E:='=, ki. Thisimpliestheequality k a f ( l c ) @ ~ ) =  k a f ( l c ) @ u ) i f X y : = l  k l > X y = ,  k i ,  which 
further means that the infinite sums 

are well defined. It is obvious that ar()R)Ou)= 'a(Y;y()~)Ou). For any ( ) i ) O v ) ~  W, 
p ( X ) ( I b O  U )  = (XX:I . . . X i n ) @  U and according to (3a) - (3c) ,  (6), (7)  and (8) the 
RHS further equals 

This proves the theorem. 
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We now give conditions on g ’ c  g under which a:, t = 1,2, .  . . , s defined by (8) 
are polynomials. Recall that this is required if one wants to obtain realisations in the 
sense of our definition. Let S be the subspace in g which is spanned by X , ,  . . . , X,,. 
For any Y E  g, we define by induction My = [ S ,  Mz,], MT = @ {  Y}. 

Proposition 1.  If there exists k E  No such that M;={O} for any  YE^, then cy:, 

t = 1,2 , .  . . , m, are finite polynomials. 

ProoJ: Obviously, if Xr=l j i  > k, then c$ = 0 for any X E g, t = 1,2, . . . , m, and according 
to the definition (8), the expressions of a: become finite polynomials. 

Now the realisations sought are obtained easily by replacing operators in the above 
expressions by suitable algebraic objects. The mapping 

extends naturally to a faithful representation W,, OU(go) on W. Thus there exist p-’, 
and if a,”, cy? in ( 6 )  are polynomials, then the mapping T :  

T ( X )  = 9-1 0 p ( X )  

is consistently defined. We denote py = c p - l o  a,” 

Proposition 2. T is a realisation of the algebra g in W,,,OU($). 

Let T be a realisation of the real algebra g in W,,, 0 U($), which is of the type 

where p;’ are real polynomials in the variables p l , .  . . , p,. Then the following 
expressions are well defined 

1 * ap,” 
2 j = 1  apj 

+ ( X ) = r ( X ) + -  -01. 

fieorem 2. 7‘ is a skew-Hermitian realisation of g in W,,OU(~,). 

Pro05 Using the relations [p,”, qi] =a#/dpi and ( la ) - ( lc ) ,  one can check easily the 
skew-Hermiticity, 
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= - 7’( X ) .  

Further 

where the P is independent of qi, i = 1 ,2 , .  . . , n. Since [ 7 ( X ) ,  7( Y ) ]  = T ( [ X ,  Y ] ) ,  then 
according to formula (10) 

Now a direct calculation gives 

Hence 7’ is a realisation of g, and the proof is completed. 

4. The construction for the real semisimple Lie algebra 

In this section, we apply the general construction described above to the case of a real 
semisimple Lie algebra. Suppose that g is a real semisimple Lie algebra and that b E g 
and B = { X I , .  . . , X,, X,,,, . . . , X,, Xs+l , .  . . , X,+,,} is a basis in g for which 

[ b, X j l =  y jq ,  (13a) 

[b, Xs+j] = -yjXs+j (13b) 
where yj > 0 for any j = 1,2, . . . , n and further 

[b ,  XI = 0, r = n + 1, . . . , s. ( 1 3 ~ )  

The triangle decomposition of g implies the existence of such a basis and b in g. For 
details see Dixmier (1974, ch 1). In the example gl(3, R )  we give such a basis explicitly 
and for other real forms of classical Lie algebras we will construct explicitly these 
bases in a forthcoming series of papers. 

The element b and the basis B define for g the following direct decomposition 

g=ntOg,bOnb_ 
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where 

n 4 = R { X j ,  j =  I , .  . . , n }  

nb = ~ { x , , ,  j = I , .  . , , n }  

g ; = R { X r , r = n + 1  , . . . ,  s}. 

The following lemma results directly from the Jacobi identity, the formulae (13a) - (  1 3 4  
and the definitions (14a) - (14c ) .  

Lemma 1 .  
(i) n:, nb are subalgebras of g. 
(i i)  [n4, gob] c n:, [nb, gob] c nb. 
(iii) If M y  = [n:, M z , ] ,  M T  = C{ Y} then there exists a k such that for any i > k 

and Y E  g, M y  = (0). 

We now specify the g', go described at the beginning of 0 3 in this way: 
b g t =  g,b@n- b 

go=go 

and further the auxiliary representation (T fulfils 

(.(gob) is faithful 

ulnb = 0. 

According to the assertion (iii) in lemma 1 we can construct the realisations Tb and 
by means of the method from 0 3 .  These have the following property. 

Theorem 3. T b  and ~b are Schur reaiisations of g in the W , , O U ( ~ ~ ) .  

Pro05 First we prove one proposition which specifies forms of elements Z(g). 

Proposition 3. Any C E Z ( g )  can be written in the form 

where Y,,,.E U(g,b) and CO€ Z(&. 

Pro05 Write C E Z(g) in the form 

where YA,,-, E U(i,b) and CO€ U(ggb). The facts, that the element C commutes with b 
and the formulae (13a) - (13c )  imply that, if 

f: niYi# f: niyi then YA,;, = 0. 
i = l  i = l  

Since y i  > 0 then, if YA,;. Z 0 ZY=, ni > 0 also n: > 0 and, therefore, the summation 
in (17 )  runs only over 6, n" for which ti, n" # 6. This and the condition (ii) in lemma 
1 imply that if X E gob, then [ X ,  CO] = 0. This completes the proof of proposition 3. 
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Using (16) and (15b) and the definition of induced representation we now calculate 
explicitly the operator p (  C). 

P ( C ) ( l b 0 4  = P(c)(P(xl))kl ' ' . ( P ( x " ) ) k 4 m 4  
= (p(X1))kl . .  . (p(X"))knp(C)(16)0u) = If)0a(Co)u. 

This proves the Schur property of 76, because T (  C)  = cp-' 0 p (  C) = 1 0  Co. Now we 
are going to check the same property for 7;. We define p ' ( X )  = cp 0 ~ ' ( x ) .  Before 
continuing the proof of theorem 3 we shall prove the following lemma. 

Lemma 2. 
(i) p'(X,) = p ( X j )  holds for any j = 1 , 2 , .  . . , n. 
(ii) For any X,, r = n + l ,  ..., ~ p ( X , ) = Z ~ = , ~ ~ a c Y ~ 0 1 + 1 0 ~ ~ .  
(iii) For any X,, r = n + 1,  . . . , s p'(X,)(  16)0 U )  = IO)@ ( c ,  + cr(X,))u, where c, E @. 
(iv) pr(Xs+j)(16)C3 U )  = 0 holds for any j = 1 , 2 , .  . . , n. 

Proof: 
(i)  Since y,, y, are positive, y, + y, # yl holds for any j ,  i = 1 , 2 , .  . . , n. Therefore 

c 2  = 0 forf; > 0, and further according to the definition (8) f X y = ,  aa;Yk/da, = 0 for any 

( i i )  The assertions ( i )  and (ii)  from lemma 1 imply cJ = 0, t = n + 1 ,  . . . , s and 
1 for which Z := 1; > 0 and, obviously, c 2  = 0 for s # r. This gives the assertion directly 
according to definition (8).  

xk, k = l , 2 , .  . . , n and also p ' ( x k ) = p ( x k ) ,  k = l , 2 , .  . . , n. 

(i i i)  By a direct calculation we obtain 

= ( p ( x, ) + cr ) ( 16) 0 U ) = id)@ ( c, + cr ( x, ) ) U. 
(iv) As in (i), any two yj ,  yi fulfil yj - yi # yj.  This implies that C$+k = 0 for any 

k, i = 1 , 2 , .  . . , n, where Zi  = (0, .  . . , O ,  1 , 0 , .  . . , O )  with 1 on ith place. This and (15b) 
give that 

j = 1  

= P- ' [P ' (C) ,  p'(Xr)I = O *  

This completes the proof of the theorem. 
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5. The realisations for the algebras sp(2, R )  and gl(3, R )  

Now we are going to illustrate the construction by the examples of the algebras sp(2, R )  
and gl(3, R). 

5.1. The example of sp(2, R )  

The algebra sp(2, R )  is the algebra of linear canonical transformations in one 
dimension. In the basis { DT1, Ell, Dll}, which was used by Deenen and Quesne (1984b) 
the generators satisfy the following commutation relations 

[El,, N I 1  = 20:1 [Ell, Dl11 = -2011 [Dll, DT1I =4E11. (18) 

Now we put b = Ell and B 
(14a)-( 1 4 4  we obtain 

{D:l, Ell ,  Dll}, then using the formulae (13a)-(13c) and 

n t  = W{ D:~} gob =WE,,} n! = R { D ~ ~ } .  

D:l(D:l)k = (D;Jk+I 

E1l(D:l)k = 2 k ( m k  +(D:dkE1l 

The formulae ( 5 )  and (18) imply 

D11( D:l)k = 4k( k - ~ ) ( D ? I ) ~ - '  +4k(  DTl)k-lEll + ( D:l)kD1l. 

According to the definitions (8) and (1 1) the realisations and then expressed explicitly 
by the relations 

T(D:1) = @ 1 

~ ( E ~ ~ ) = 2 q p @ l + l @ E ~ ~  

T(Dl1) =4qp2@1 +4p@ E11 

T' (  DT1) = @ 1 
and 

T'( Ell)  = 2qp@ 1 + 1 @(Ell  + 1) 

T'( D11) = 4W2@ 1 + 4p@ (E11 + i). 
These realisations are of Dyson type and coincide with those constructed by Deenen 
and Quesne (1984b) in the framework of partially coherent states. 

5.2. The example of gl(3, R )  

The algebra gl(3, R)  is nine-dimensional with the standard basis { E u :  i , j  = 1,2,3}, the 
elements of which obey 

(19) 

If we denote b = Ell and B =  {El2, E133 Ell ,  E22, E,,, E233 E3*, E21r E3J we obtain 
according to (13a)-( 13c) and definitions (14a)-( 14c) 

[E,, Ek,] = 8jkEil - 8i/Ek/* 

n: = IWiE12, E13} 

g,b = R{EI1, E223 E339 E23, E32} 

n! = R{E21, E31). 
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The explicit form of the realisations follows from the equalities ( 6 )  for XE:yE:y 
with an arbitrary X E B, which are calculated in the appendix. In this way, one obtains 
coefficients c z  in the definition ( 8 )  which further give the formulae 

According to theorems 2 and 3 these realisations are Schur realisations of the algebra 
gl(3, R )  in W,OU(g,b) furthermore, the realisation T' is skew-Hermitian. On this 
example it is seen that the described method is also applicable to the reductive Lie 
algebras. 
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